
NECESSARY CONDITIONS OF THE CALCULUS OF 

VARIATIONS FOR A PROBLEM OF BOLZA-MAYER TYPE 

(NBQBs(gm u8LovIu vARIATs1oNN0@0 IaOIltaIaIM 

DIZA ODmI ZADmu TIPA BoL’TaA-MAImA) 

PMM vo1.29, NO 2, 1965, PP. 368-372 

V.A.KOSMODEZM'IANSKII 

(Moscow) 

(Received April 9, 1964) 

The general problem of the optimization of certain processes of control Is 
considered. It is supposed that the control functions depend parametrically 
on time and on the coordinates of the points of discontinuity of the first 
kind. The position of these points Is to be determined from the equations 
satisfied by the extremals of E. certain functional. 

The appllcablllty of the necessary conditions of the calculus of varla- 
tlons: the multiplier rule (Section 2), the conditions of Welerstrass (Sec- 
tion 3), of Clebsch (Section 4), and Jacobi (Section 5), Is analyzed, for 
the problems of the type under consideration. 

The theory Is Illustrated with the elementary example of the reotlllnear 
motion of a two-stage rocket In a homogeneous gravity field, the reslstence 
of the medium being neglected (Section 6). 

1. Suppose that tie process takes place In a dynamical system whose 
motion Is governed by n ordinary differential equations of first order 

g, = X8' - j, (21, . . .( znr Ul, . . .) u,, t) = 0 (s = 1, . . ., 78) (1.1) 

and the system of r finite equations 

Y,=I, (ul ,..., u,,t)=O(k=i ,..., r<m) (1.2) 

In Equations (1.1) and (1.2), the Y, t) are the coordinates which fix 
the position of the system, and the u 1 t, t ) are the control functions, 
which have dlscontlnultles of the flrst'klnd in the Instants t, . 

It Is supposed that the explicit dependence of the m-r control functions 
u* >...t u._, on the variables t and t, Is known. 

The coordinates of the system satisfy p conditions at the ends (here 
t, and T are not prescribed) 

q+ = 'PI [t,, T, z (Gr x (T)l = 0 (1 = 1, . . ., P<2n+ 1) (1.3) 

The probltm Is to determine the Instants of time t, for which the func- 
tlonal of the form 

J = g [t,, 3,. (44, T, Z (T)l+ 5 jo (6 2, u) dt (1.4) 
to 

possess an extremum. 
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P. Consider the conditions (multiplier rule) for such an Integral to be 
stationary. Suppose that the coordinates of an admissible family (Bliss) 
r(t,b) are introduced; and that these functions are continuous and possess 
almost everywhere, with the exception of a flnlte number of values 
tinuous derivatives with respect to t ; 

t,, con- 
that these functions also have 

continuous partial derivatives with respect to the parameter b , everywhere 
in the domain of the variables t and b under consideration. The varla- 
tlon of the famll 
the parameter b J 

along a curve 8 (corresponding to the value b-0 of 
is'deflned by the Equations 

ati 
6t, (0) = ab,db, = &cdbc, 

az, (4 0) 
6x, = ab,-db, = tl,,cdbc (2.1) 

auj tt* ti 
15uj= ab 

to)) 

% 
a 

= tj,@o 

b denotes the totality of the parameters b,,.., b, 
henot: the variations corresponding to the par&meter 

summation Is understood whenever a subscript 

the variational 
The variations i_(t), cj,,(t) satisfy, along the curve E , 
equations 

(2.2) 

i=i, . . ., n; s = 1,. . .,n 

k=l, . . ., r: j = I.. . ..m 

and also the variational equations at the end of the Interval 

where the subscript n refers to the number of parameters under consldera- 
tlon at the instant 2'. 

Let us show that the problem posed In Section 1 Is not trivial, by show- 
ing that a given curve E , satisfying Equations (l.l), may be lmbedded in 
a family of curves which satisfy similar conditions as E . 

The following imbeddlng lemma Is valid (Bliss). 

rl 
,,$ Wm;dm$3slble curve 6 satisfy Equations (l.l), (1.2) and 

(t) be an adml*rslble 
tlons (2.2) ox?'g . 

set of variations which satlsfyEk$&- 
Then there exists an s-parameter family of admissible 

curves, containing the given curve E when 
satisfy Equations (1.1) and 

b, = 0 (a = f, . . ., s) which 

the functions q,,,(t) and 
(1.2 
Sj,c(t 

, and are such that, for each u-l,...,d, 
are the VarlatlOnS on E with respect to 

the parameters b,_ . 
Cosider the function ti(b) defined by Equation 

ti (b) = ti (0) + ;+ b, (I b, I < 8) 
a 

If b,= 0, then Q(O)-= tc Suppose thet, along t:?e curve R the corres- 
ponding matrix has the same rank as the Aumber of equations representing the 
control functions In the form u, =u,(t,b). 

Expandlng these functions ln the neighborhood of b I 0 (I.e. on'the curve 
E ) with respect to the parameter b, , we obtain 

uj it, ti (b)l = uj (tv t$ + Sj, $a 

Then the system of differential equations becomes 
. 

Ta - f, lx, II + 5 b, tl = 0 

it 

Suppose that the curve E has a corner at the Instant of time t, . 
From the existence theorem for systems of ordinary dlfferentlal equatlora, 
follows that, ln the nelghborgood of (r,, f, b = 0) there Is a solution 
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of the normal s stem-of ordinary differential equations (at least on the 
interval [t ,t,y) which may be representd In the form zg = X*[t, t,,, z(&,), b] 
with lnltla? point t,, x,(t,). The functions 

~8 -- X, it, $1 z (tJ + brl (Q, bl = xg (4 b) (2.4) 

donstltute an elementary family, whose curves satisfy E uatlons 
the Interval [to ,t,]. When t - t,, the function X, ? t) become:'= ' On 

xs (k b) = X, [tl, x 01) + 4 (U bl = xs 01, 0) f Qs,o (h) 

that Is to say, the variations of the functions x~,~(~,O) along the curve E 
have the lnltlal values qs,c(tl). 

with the vaxla&ns Inasmuch as these varl\kk constitute the unique 
solution of the equations bU,= 0 which assume the Initial values ']s,a(t)l. 

In the similar way one can construct, on the interval (t,,t,), a new ele- 
mentary family, adjoining the preceding one, etc. 

Let us suppose that, on the Interval [t,, T] under consideration, the 
control function uJ has a single point of discontinuity t, 

Let us distinguish the various functions, when considered on the Interval 
(t ,tl), by a superscript minus sign, @or example x -(t) -(t)); slmil- 
arty, when they are considered on the Interval (t,, $) a sipkcript plus 
sign will be used (for example x,+(t) , u,+(t), etc.). 

The explicit form of 
tive Intervals for each 
course of the proof, so 

the functions * (t,t. T), defined on their respec- 
concrete proble?; doei'not play any role In the 
that we shall simply write 

U j- = uj- (4 6J> Uj' = uj+ (t, z!I) 

functions L and B 

L = f" + h,g, - pkYk = &x8' - H 

Let us Introduce the 

H= H,+H,=&~,-P&~ (1, = - 1) 

where k,(t) and vz(t) are the Lagrange multipliers. 

In construct- the expressions for the first variations, let us choose 
the multipliers A.* (t). By* (t) ln such a way that the coefficients of 
'Is c(t) (s= 1,. . .!n); fj o 2) (i = m, -r + 1, . . ., m); vanish; the remaining 
cokfficlentsofthe indecen ent variations must then equal zeio. We obtain 
then that the extremals must satisfy the differential equations 

OL _=o (s=l,..., n), 
a,* 

aL - = 0 

%c* 
(k = 1, . . ., r) (2.5) 

Further, tee following differential equations must be satisfied by the 
functions A,* (t) : 

d aL a= 0 m---z 

dt ax,‘* ax f 8 
(s = 1, . . .( 72) 

while the following, finite, equations determine the pk*((t) : 

_g_=O 
&ii* 

(i = m - r + I,..., m) 

Simultaneously, the following boundary condition hold 

(2.7) 

a@ 
ax,+ (T) 

+ A, (T) = 0, - -_iE..- + A, 00) = 0 
ax, (to) (2.8) 



Calculus of variations for a problem of Bolza-Mayer type 419 

i3Q a’ p+- 
ax,(T) 

x:(T) + j” (T) = 0 (Q = g + PI'++) 

__aQ aQ 
at, - 

~ x8’ (lo) + j” (T) + “;+dt = 0 
ax, (to) s 0 

t. 

(2.9) 

Finally, one has the analogue of the Welerstrass-Erdmann corner condition 

Thus, we have obtained 2n first order differential equations (2.6) 
satisfied by the multipliers h,* (t)(s = 1, . . . . n); 2r relations (2.7) which 
are satisfied by the p,* (t)(k = I,..., r); and, further, & differential 
equations (2.5) which are satisfied by the x,*(t)(~= i,...n). 

arbitrary constants 
fro~h~h~~l~~~l~~S~o~~s~~~i~erlr~ order equations (2,:i 5:$?6), 
the quantities t , t, , T , and alSO the p 
4n + p + 3 qua&ties. 

multipliers pr; f 

For determining these unknowns we have 2n 
n 

boundar 2c;;yltlons (2.8); 
conditions of the X,(t) multipliers continuity In 3! n conditions 

of the coordinates continuity ln the point t, zI- (tl) = z',+ (tI! and P rela- 
three equations (2.9), (2.10), ln all 4n + p + 3 quan- 

Equations (2.5) to (2.10) express the fact that the functional J IS to 
be rendered stationary In our variational problem. 

3. For the type of problem under consideration, the necessary condition 
of Welerstrass holds; this condition may be formulated as follows [3]: an 
admissible curve E R satisfying the system of equations (1.1) and the Sta- 
tionary conditions with the multipliers X - - 1 , A (t) is said to Satisfy 
the necessary condition of Welerstrass wltk these mul~lpllers,provlded that 
for every element (t, X, z', ti,h,tL) of the curve E , the following inequality 
holds: 

E = L (2, X’, u, h, /A, t) - L (2, x’, u, h, p, t) - $ (X,’ - a;) >,o (3.1) 
8 

for every admissible (x, u,h,p)# (X’, u,h, IL) which satisfies the systems 
(l.l), (1.2). 

Employing the normal fundamental system of differential equations, the 
necessary conditions of Welerstrass may be written thus 

E = H (2, u, h, p, t) - H (x, u, A, PL, t) 

that Is to say, the following inequality Is a necessary condition for the 
existence of a strong minimum: 

H (r, u, J., vL, t) > H (2, H, A, IL, t) (3.2) 

The proof of the theorem coincides with the proof of similar theorems 
which appear ln [2 and 33. 

4. Suppose that the control U and the derivatives of the coordinates 
1,' differ from uk and X: by small quantities 

u, = uk f 6uk, x; = 5,' + 6x,' (4.1) 

where Suk, 6x,,' satisfies the variational equations on j+J 
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Substituting from (4.1) Into the inequality (3.2), and expanding E in 
powers of hu,,, 6x,’ we obtain 

(4.3) 

Thus, the necessary condition of Clebsch may be formulated as follows: 
An admissible curve 
plier rule, 

E , satisfying Equations gS = 0, qk= 0, and the multl- 
is said to satisfy the necessary condition of Clebsch with 

respect to these multipliers, provided that for each element 

(t, 2, x', u, 1, p) E 1:‘ 

the Inequality (4.3) holds for arbitrary 
tlonal equation (4.2). 

fiu,, 6'lp which satisfy the varla- 

5. Let us suppose, as was done before, that the curve F Is lmbedded In 
an e-parameter famll 

v 
and that It satisfies the multiplier rule, that Is, 

x,-~;(t,b), with lb < E . Let us express the first differential of J in 
the form 

AI = A(D + [L (tl - 0) - L (tl + 0)] 19, + L (T) 6T - L (to) 6t, + 

Regarding this as a function of the parameter b we obtain the second 
differential 

T 
A21 = Acp+ ';- x+. 6t2 + 2 a%- Ax 6t + 2 aL 

a ax, a 
z6Uj6t + 

j I t, 

6t + 2 f?k 6u.b t’-O + 
auf 3 I t,+o 

aL &A + 
20++ +-.-.- p 6t12 dt 

aup at,2 1 (5.1) 

where 

Ax, = 

(t = to, T, tl - 0, tl -i- 0) 

Further, (5.1) must be nonnegative for arbitrary admissible sets of varl- 
atlons which satisfy the variational equations (2.2) on r . 

Thus, we have shown the appllcablllty of the fourth necessary condition 
for a minimum for variational problems of the kind under consideration, 
namely: 

"A curve p with multlpllers X,--l, a,(t) Is said to satisfy the 
fourth necessary condition for a mln;mum, provided that the second variation 

Aa1 of (5.1) Is nonnegative on E . 
The nonnegatlvlty of the second variation may be obtained by solving the 

related problem of the minimum of the second variation [2 and 33. 
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6. By way of Illustration of the above mentioned theory, we shall consl- 
der the simple example of the rectilinear motion of a two-stage rocket ln a 
homogeneous gravity field, without taking Into account the reelstence of the 
medium. The equation of motion is 

v’ = _Vv’!L-g 
u 

where v is the velocity of the composite rocket, is the acceleration 
of gravity, u = m/m,, is the dimensionless mass of tRe composite rocket, 
where m IS the linearly varying mass of the composite rocket, m, Is the 
lnltlal mass of the rocket, and p Is the relative velocity of the combus- 
tion products. 

The optimum Instant tl for the separation of a two-stage composite rocket 
which will give the.maxlmum v 
out), 

at the end of the combustion period (at burn 
can be found from Equations 

wlru11(8- = B~v,rwl-~ (Pi fuel consumption per sec.) 

u1 =. u (4 + 0)s ug_ = u (T - O), u, = u (T + O), Ul_ = 24 (tl -0) 

Since A(t) = - 1 , the function H Is given by 

H=_(!$-g) 
For this particular varlatlonal problem, let us verify that all the 

necessary conditions mentioned above are satisfied by the extremal E1 which 
Is obtained upon solving Equation (6.1). Welerstrass' Inequality (3.2) 
becomes 

_ WI’ > W,’ 
-,--9 
Ul- Ul 

v'(t1 - 0) g v'(t, + 0) (6.2) 

that Is, the motor of the two-stage rocket must , at each Instant of time, 
impart to the rocket an acceleration which Is not less than the acceleration 
which a single-stage rocket would have received from Its motor at that same 
instant. 

Comparing E. with the solution obtained for a three-stage rocket, one 
arrives at an inequality analogous to (6.2). 

The Welerstrass Inequality enables us to show that a homogeneous n-stage 
rocket can lmpart a maxlmum velocity which exceeds that of a rocket with 
ken stages, It Id readily verified that the necessary conditions of 
Clebsch and Jacobi are not satisfied along En,. which represents a two-stage 
homogeneous rocket. 
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